Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.

Identifieur interne : 000041 ( Main/Exploration ); précédent : 000040; suivant : 000042

Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.

Auteurs : Liang Hu [République populaire de Chine] ; Hui Zhong [République populaire de Chine] ; Zhiguo He [République populaire de Chine]

Source :

RBID : pubmed:31955336

Descripteurs français

English descriptors

Abstract

Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH2 CdSe/ZnS 505, NH2 CdSe/ZnS 565, or NH2 CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.

DOI: 10.1007/s11356-019-07468-x
PubMed: 31955336


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.</title>
<author>
<name sortKey="Hu, Liang" sort="Hu, Liang" uniqKey="Hu L" first="Liang" last="Hu">Liang Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083</wicri:regionArea>
<wicri:noRegion>410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Hui" sort="Zhong, Hui" uniqKey="Zhong H" first="Hui" last="Zhong">Hui Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Central South University, Changsha, 410012, China. hmmzhjj@csu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Science, Central South University, Changsha, 410012</wicri:regionArea>
<wicri:noRegion>410012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Zhiguo" sort="He, Zhiguo" uniqKey="He Z" first="Zhiguo" last="He">Zhiguo He</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China. zghe@csu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083</wicri:regionArea>
<wicri:noRegion>410083</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31955336</idno>
<idno type="pmid">31955336</idno>
<idno type="doi">10.1007/s11356-019-07468-x</idno>
<idno type="wicri:Area/Main/Corpus">000028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000028</idno>
<idno type="wicri:Area/Main/Curation">000028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000028</idno>
<idno type="wicri:Area/Main/Exploration">000028</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.</title>
<author>
<name sortKey="Hu, Liang" sort="Hu, Liang" uniqKey="Hu L" first="Liang" last="Hu">Liang Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083</wicri:regionArea>
<wicri:noRegion>410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Hui" sort="Zhong, Hui" uniqKey="Zhong H" first="Hui" last="Zhong">Hui Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Science, Central South University, Changsha, 410012, China. hmmzhjj@csu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Science, Central South University, Changsha, 410012</wicri:regionArea>
<wicri:noRegion>410012</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Zhiguo" sort="He, Zhiguo" uniqKey="He Z" first="Zhiguo" last="He">Zhiguo He</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China. zghe@csu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083</wicri:regionArea>
<wicri:noRegion>410083</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium Compounds (MeSH)</term>
<term>Cysteine (MeSH)</term>
<term>Phanerochaete (MeSH)</term>
<term>Quantum Dots (MeSH)</term>
<term>Selenium Compounds (MeSH)</term>
<term>Sulfides (MeSH)</term>
<term>Zinc Compounds (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Boîtes quantiques (MeSH)</term>
<term>Composés du cadmium (MeSH)</term>
<term>Composés du sélénium (MeSH)</term>
<term>Composés du zinc (MeSH)</term>
<term>Cystéine (MeSH)</term>
<term>Phanerochaete (MeSH)</term>
<term>Sulfures (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cadmium Compounds</term>
<term>Cysteine</term>
<term>Selenium Compounds</term>
<term>Sulfides</term>
<term>Zinc Compounds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phanerochaete</term>
<term>Quantum Dots</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Boîtes quantiques</term>
<term>Composés du cadmium</term>
<term>Composés du sélénium</term>
<term>Composés du zinc</term>
<term>Cystéine</term>
<term>Phanerochaete</term>
<term>Sulfures</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH
<sub>2</sub>
CdSe/ZnS 505, NH
<sub>2</sub>
CdSe/ZnS 565, or NH
<sub>2</sub>
CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">31955336</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.</ArticleTitle>
<Pagination>
<MedlinePgn>11116-11126</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-019-07468-x</ELocationID>
<Abstract>
<AbstractText>Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH
<sub>2</sub>
CdSe/ZnS 505, NH
<sub>2</sub>
CdSe/ZnS 565, or NH
<sub>2</sub>
CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Life Science, Central South University, Changsha, 410012, China. hmmzhjj@csu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Zhiguo</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-0692-010X</Identifier>
<AffiliationInfo>
<Affiliation>School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China. zghe@csu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>51909281</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31500091</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>51774339</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019187">Cadmium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018036">Selenium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013440">Sulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017967">Zinc Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FWU2KQ177W</RegistryNumber>
<NameOfSubstance UI="C025451">sodium bisulfide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019187" MajorTopicYN="Y">Cadmium Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="Y">Phanerochaete</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045663" MajorTopicYN="Y">Quantum Dots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018036" MajorTopicYN="Y">Selenium Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013440" MajorTopicYN="N">Sulfides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017967" MajorTopicYN="N">Zinc Compounds</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antioxidant enzymes</Keyword>
<Keyword MajorTopicYN="N">CdSe/ZnS quantum dots</Keyword>
<Keyword MajorTopicYN="N">Cysteine</Keyword>
<Keyword MajorTopicYN="N">Detoxification</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
<Keyword MajorTopicYN="N">Sodium hydrosulfide</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31955336</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-019-07468-x</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-019-07468-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Hazard Mater. 2017 Jan 5;321:37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27607931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2014 Aug 26;8(8):7571-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25000534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jan;97(1):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2019 Apr;220:523-530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30594805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Mar 19;46(3):662-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22853558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2014 Aug 19;48(16):9205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25084343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2011 Mar;174(1-4):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20499163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2016 Jan 15;301:106-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Jul 17;46(14):7818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22703191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2011 Jun 28;5(6):4909-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21612298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2012 Jun 26;6(6):4748-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2019 Oct 15;181:336-344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31202934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Mar 19;46(3):743-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22786674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2014 May 1;117:199-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24632392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2004 Jan 1;4(1):11-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28890669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2005 Jul;1(7):706-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17193510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2016 Dec 15;320:278-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27565852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2014;98(14):6409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2016 Nov 15;318:61-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27399148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2015 Feb;175(4):1981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2017 Apr;101(7):2713-2733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28251268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2013 May 20;26(5):662-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2017 Oct 5;339:354-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28668753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2015 Oct 27;9(10):10324-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26389814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2014 Mar 25;8(3):2826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24494827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2018 Feb 5;343:332-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2012 Feb;33(5):1238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2011 Sep 1;45(17):7345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21770469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 11;6:20813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26864597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2016 Jun;90:27-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26986854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3547-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2014 Aug;109:208-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Aug 21;46(16):8764-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22834414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2019 Jan 30;168:486-494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30423513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2014 Jun 24;8(6):5682-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24873349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2017 Oct;184:1071-1079</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28662549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2019 Jan 30;168:408-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30399539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2019 Sep 30;180:242-251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31100590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Dec;34(37):9545-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24011712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2017 Nov 1;159:303-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28802738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2011 Sep;32(25):5855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21601920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2012 Oct;33(29):7071-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22818982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2016 Apr 5;50(7):3890-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26986484</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hu, Liang" sort="Hu, Liang" uniqKey="Hu L" first="Liang" last="Hu">Liang Hu</name>
</noRegion>
<name sortKey="He, Zhiguo" sort="He, Zhiguo" uniqKey="He Z" first="Zhiguo" last="He">Zhiguo He</name>
<name sortKey="Zhong, Hui" sort="Zhong, Hui" uniqKey="Zhong H" first="Hui" last="Zhong">Hui Zhong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000041 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000041 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31955336
   |texte=   Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31955336" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020